
���������
������ ����

�������� �

�����!� ����

����������������
	��������� ���� �������
�����������
�������� ���

��� ��� ����
�� 	�� ����

����� ��� ���� ������� ��������� ������������� ��� ����������

i

EXECUTIVE SUMMARY

OBJECTIVE

The objective of this research was to develop a windowing framework for accessing the
diverse collections of software tools needed by software development projects. A major research
goal was to develop an environment/tool integrator (ETI) that can easily be customized to satisfy
the unique needs of specific projects. The purpose of this report is to (1) explain why the ETI
was developed, (2) describe it, and (3) provide instructions for its installation and use.

RESULTS

This report describes the second released version of the ETI, version 1.2. The new
capabilities provided by this version include X/Motif front-ends and context-sensitive help for
many tools; conformance to the most recent NRaD user interface specifications; and porting to
additional UNIX-based platforms, besides Sun Workstations. Version 1.2 was submitted to the
Software Technology for Adaptable Reliable Systems (STARS) Asset Source for Adaptable
Reliable Software (ASSET) library in the Spring of 1994.

RECOMMENDATIONS

The most significant recommendations are:

1. More help is needed from human factors experts during development of user interfaces
for DoD software and CASE tools. The operation of these user interfaces can—and must
be—simplified.

2. Users should aid in cleaning up Ada repositories. Tools that do not work, or are of
marginal quality, should be removed.

3. The Ada Joint Program Office, National Aeronautics and Space Administration, or other
government organization(s) should provide support to AdaNet to improve the quality of
tools in the repository. Improvements that would benefit the entire Ada community
include X/Motif front-ends, modifications to increase portability, and other enhance-
ments.

iii

CONTENTS

EXECUTIVE SUMMARY i.

1.0 INTRODUCTION 1.

2.0 BACKGROUND 3.

3.0 CHARACTERISTICS 5.

3.1 KEY FEATURES 5.
3.2 REQUIRED HARDWARE AND SOFTWARE 5.

4.0 LESSONS LEARNED 7.

4.1 VALUE OF DEMONSTRATIONS 7.
4.2 ADVANTAGE OF FINDING USERS EARLY 7.
4.3 MOTIF HELP FROM USENET BULLETIN BOARD 7.
4.4 GUI BUILDERS 7.
4.5 ENHANCEMENT TO USER INTERFACE SPECIFICATIONS 7.
4.6 TAILORING 8.
4.7 SOURCES FOR PUBLIC DOMAIN TOOLS 8.
4.8 HUMAN FACTORS INVOLVEMENT 8.

5.0 RECOMMENDATIONS 9.

5.1 RECOMMENDATIONS FOR FUTURE WORK 9.
5.2 GENERAL RECOMMENDATIONS 9.

6.0 REFERENCES 11.

7.0 ANNOTATED BIBLIOGRAPHY 13.

8.0 ACRONYMS AND ABBREVIATIONS 15.

APPENDIX A: USING THE ENVIRONMENT/TOOL INTEGRATOR (ETI) A-1.

A.1 INSTALLATION A-1.
A.1.1 Installation from a QIC Tape Provided by NRaD A-1.
A.1.2 Installation from the STARS ASSET Library A-2.

A.2 EXECUTION A-3.
A.2.1 Invoking the SWEEP Environment/Tool Integrator A-3.
A.2.2 Top-Level Window Description A-3.
A.2.3 Tool Invocation A-4.

A.3 TAILORING A-5.
A.3.1 Version 1.2 as Delivered A-5.
A.3.2 An Example of Tailoring to a Specific Project A-7.

A.4 REFERENCES A-9.

iv

APPENDIX B: USING THE TOOLS B-1.

B.1 C TOOLSET B-1.
B.1.1 Line Counter B-1.
B.1.2 Pretty Printer B-1.
B.1.3 Function Prototypes Generator B-2.

B.2 ADA TOOLSET B-4.
B.2.1 Body Stubber B-4.
B.2.2 Compilation Order Maker B-4.
B.2.3 Line Counter B-7.
B.2.4 Pager B-9.
B.2.5 Pretty Printer B-9.

B.3 UTILITY B-10.
B.3.1 Calculator, Clipboard, Command Shell, E-Mail B-10.
B.3.2 Editors B-10.

B.4 REFERENCES B-11.

APPENDIX C: BACKGROUND INFORMATION ON THE ADA TOOLS C-1.

APRICOT, APRICOT Report Generator (ARG), and APRICOT
 Script Generator (ASG) C-1.

Body Stubber C-1.
Line Counter C-1.
Pager C-1.
Pretty Printer C-1.

APPENDIX D: SOURCES FOR PUBLIC DOMAIN TOOLS—PHONE
NUMBERS AND ADDRESSES D-1.

FIGURES

A-1. Top-level window. A-3.

A-2. Top-level window with all tools and options displayed. A-4.

A-3. Top-level window with subcategory of editors displayed. A-4.

A-4. Example of setup table. A-6.

A-5. Top-level window with tools and options displayed tailored to a
specific project. A-8.

A-6. Example of setup table tailored to a specific project. A-9.

B-1. Menu for the C line counter. B-2.

B-2. Menu for C pretty printer. B-3.

B-3. Menu for the function prototypes generator. B-4.

B-4. Menu for the compilation order maker. B-5.

v

B-5. Menu for APRICOT. B-6.

B-6. Menu for the APRICOT report generator. B-7.

B-7. Menu for the APRICOT script generator. B-8.

B-8. Menu for the Ada line counter. B-9.

B-9. Menu for pager. B-10.

1

1.0 INTRODUCTION

This document describes the environment/tool integrator (ETI), version 1.2, developed under
the Software Engineering Environment Prototypes (SWEEP) task of the Software Engineering
for Command Control and Communications (C3) Systems project. The ETI is a windowing
framework for accessing software tools that can be easily customized to satisfy the needs of a
project. The ETI allows users to define (1) the appropriate tool categories for a specific project
and (2) the interfaces for accessing individual tools. Tools that may be accessed include
computer-aided software engineering (CASE) tools, software-engineering environments, reuse
libraries, project-specific tools, public domain tools, and utility tools. (For a list of the acronyms
and abbreviations used in the report, refer to Chapter 8.)

The ETI provides a convenient way of displaying the names of all tools available to a project
development team. It supports multiple programming languages as well as different applications
(e.g., C3 tactical and corporate information-management [CIM] applications).

The ETI executes on the following Unix-based computers: SPARC 1 (OS: SunOS 4.1.3),
Silicon Graphics (OS: IRIX 4.05H), DEC Alpha (OS: OSF 1.3), IBM 6000 (OS: A1X2.3), and
SPARC 10 (OS: SunOS 5.2). Tools may reside on various workstations in a local area network
(LAN).

The ETI, version 1.2, was submitted to the Software Technology for Adaptable Reliable Sys-
tems (STARS) Asset Source for Software Engineering Technology (ASSET) library. It is avail-
able from the STARS ASSET library at no cost and with unlimited distribution. Ada and C
public-domain tools available with version 1.2 include an Ada pretty printer, Ada line counter,
Ada body stubber, C pretty printer, C line counter, and a C function prototype generator. Utility
tools include editors, a calculator, clipboard, mailer, and others.

The ETI was developed in-house by the Naval Command, Control and Ocean Surveillance
Center Research, Development, Test and Evaluation Division (NRaD). Version 1.1
was used at software development sites for the Operations Support System (OSS) project at
NRaD.

Major enhancements to the ETI, version 1.2, include the following:

1. Porting to many Unix-based computers. (Version 1.1 executed only on Sun work-
stations.)

2. X/Motif front-ends and context-sensitive help for three Ada tools (Ada Primitive
Compilation Order Tool (APRICOT), PAGER, and line counter).

3. Conformance to the most recent version of the Navy Command and Control user inter-
face specifications (reference 2). This includes a capability to invoke tools from the key-
board, the use of default buttons, and the use of different colors for editable text and
other widgets (user interface components).

4. A C-function prototype generator for generating header files for C source code.

2

This report includes the following information for version 1.2 of the ETI:

� Background information

� Characteristics

� User instructions

� Lessons learned

� Recommendations

� Descriptions of the tools included

Potential users of the ETI and this report are software developers who use Unix-based
computers.

3

2.0 BACKGROUND

The need for the ETI was recognized by observing the ways in which software was being
developed for several projects at NRaD and at other Navy laboratories. The following problems
were identified that can be solved or minimized by using the ETI:

1. Project software engineers were sometimes unaware of potentially useful tools available
for software development, even when they resided on project computers. Very useful
tools that could have been used were not being applied.

2. Most commercially available environments have extensibility limitations. Examples of
such limitations include:

� Users cannot add their own tools, because the environment is predetermined
and cannot be modified by the user.

� Tool integration is possible, but difficult and time consuming.

� Tool integration is possible only by accessing the newly integrated tool through
layers of menus.

� Upon the release of a new version of an environment, users must reintegrate
project tools.

3. Commercial environments are frequently tied to a computer language or a to vendor’s
compiler. NRaD and Navy projects often use multiple programming languages.

4. Licensing and cost considerations preclude the widespread use of commercial environ-
ments.

The ETI solves each of these four problems by:

1. Providing a way that project users can view and access all available project tools. This is
especially helpful for programmers who are new to a project.

2. Providing an alternative to integrating tools into commercial environments. Tools may
be integrated into the ETI and accessed from it. Multiple commercial environments and
reuse libraries can also be accessed from it.

3. Not tying into any one language or compiler. Multiple compilation systems may be
accessed.

4. Making it public-domain software. The ETI is available from the STARS ASSET
library.

5

3.0 CHARACTERISTICS

This section describes the key features of the ETI, and also lists the required hardware and
support software.

3.1 KEY FEATURES

The ETI:

� Enables the use of software tools, environments, and reuse libraries together, in
an integrated manner, for software development.

� Offers easy customization by users. Project members can define tool categories
and tool interfaces by creating a setup table. Knowledge of Graphical User
Interface (GUI) builder tools and X/Motif is not required.

� Includes enhanced public domain Ada and C software development tools and
utility tools.

� Provides interfaces to commercial environments and tools.

� Conforms to Navy Command and Control user interface specifications
(reference 1).

� Includes an on-line help facility.

� Offers portability across platforms (Unix).

3.2 REQUIRED HARDWARE AND SOFTWARE

The hardware and software required by the ETI are as follows:

� The ETI executes on SPARC 1 (OS: SunOS 4.1.3), Silicon Graphics (OS:
IRIX 4.05H), DEC Alpha (OS: OSF 1.3), IBM 6000 (OS: A1X2.3), and
SPARC 10 (OS: SunOS 5.2).

� The ETI and included tools require approximately 16 megabytes of disk
space. They will execute with the minimum memory provided by any of the
above systems. The executables run on SPARC 1 (OS: SunOS 4.1.3). To
produce executables for the other systems (mentioned in the previous
paragraph), the source code must be recompiled.

� The X/Motif (X11R5 libraries and Motif 1.2) is required.

7

4.0 LESSONS LEARNED

During development of the ETI, the authors learned several lessons, which are covered
below.

4.1 VALUE OF DEMONSTRATIONS

Task members found a transition project and users for the ETI by rapidly developing a func-
tional prototype that was demonstrated repeatedly. Task members felt the initial prototype
offered enough functionality for project developers to recognize its potential. Demonstrations
were given to key personnel of candidate projects at NRaD and other Navy laboratories. Users in
private industry were found by giving demonstrations at national Armed Forces Communica-
tions and Electronics Association (AFCEA) conferences.

These demonstrations have led to the ETI improvements resulting from user feedback.
Examples of helpful suggestions include (1) making the entire top-level window tailorable and
(2) providing a context-sensitive help capability. The final capability allows a user to get help on
a particular field by positioning the cursor on the field and then by clicking the mouse button.

4.2 ADVANTAGE OF FINDING USERS EARLY

Early in the development of the ETI, the NRaD Operations Support System (OSS) project
members made many valuable suggestions, which included providing the capability for sub-
categories of tools; and reducing the size of the top-level window, so that other application
windows were visible.

4.3 MOTIF HELP FROM USENET BULLETIN BOARD

USENET (Users’ Network) is an internationally distributed bulletin board supported mostly
by Unix machines. We found it to be an excellent source for detailed technical information about
Motif. Posting messages with questions on USENET was more successful than using other
sources. For more information on how to read and post news, type: man rn and man Pnews,
respectively, on Unix machines that have access to those programs.

4.4 GUI BUILDERS

GUI builders are interactive tools for building graphical user interfaces. At the time actual
development started on the ETI, a number of GUI builders were considered for use. The only
GUI builder that then supported Ada was TAE+, and it lacked maturity. Builder Xcessory was
chosen, because we had used it previously, it provided the capabilities needed, and it was reason-
ably priced. In the past several years, TAE+ has improved substantially, and quality GUI builders
have become available that support Ada.

4.5 ENHANCEMENT TO USER INTERFACE SPECIFICATIONS

We were able to conform to the NRaD user interface specifications (reference 1) by using
Motif—except for one case. The specifications say that the background color of the scrolled list
widget is light gray and the background color of the slider in the scroll bar is light blue. We
found this was not possible using the OSF/Motif list widget and recommend that the standards
be changed. No other difficulties were found with other aspects we used.

8

4.6 TAILORING

Three tailoring approaches were considered. In the first approach, users would employ a GUI
builder to customize the ETI to meet their needs. The second was to provide an automated
method for constructing the windowing framework from a setup table. With the third, the second
approach would be extended by building the setup table from an interactive program. The second
approach was followed. The first approach was not chosen, because it requires the user to know
Motif and how to use a GUI builder. And the third was not done because of time constraints and
because it would probably not be significantly easier for users.

4.7 SOURCES FOR PUBLIC DOMAIN TOOLS

The source of most Ada public domain tools was the AdaNet repository in Morgantown,
WV. Sources for C tools were found in the Archie bulletin board (reference 2). The utility pro-
grams are from the X11R5 libraries. Considerable time and effort was spent compiling and
executing tools from the Ada repositories. Some tools worked, some did not work well, and
some did not work at all. The quality of tools and components in the repositories must be
upgraded with the help of the user community. Upgrading needs to include the removal or
enhancement of those units that do not compile nor execute properly. Furthermore, when a tool
or component is vastly inferior to one with equivalent or better functionality, the inferior unit
should be removed.

The AdaNet repository contained six Ada pretty printers. Only pretty printer 4 and pretty
printer 6 were written in valid Ada. Pretty printer 6 was selected because task members could not
get pretty printer 4 to execute properly. Note that pretty printer 6 still contains some minor bugs.

Two Ada body stubbers were found in AdaNet. Neither of them execute using a validated
Ada compiler; however, body Stubber 2 was modified by task members so it would run on vali-
dated Ada compilers. Several Ada line counters were examined in the two repositories, with the
line counter, File_Checke r , selected. Several bugs were found in it and fixed.

The C line counter selected, kdsi, was located in the Archie bulletin board (reference 2). One
minor bug (for an uninitialized variable) was fixed before integrating the line counter into the
ETI. Archie can be accessed by rlogin_ing or telnet-ing to archie.ans.net (147.225.1.2) or
archie.sura.net (128.167.254.179) with username archie and no password.

The C pretty printer currently used is from SunOS 4.1.3.

Appendix D contains information needed for contacting or connecting to these repositories.

4.8 HUMAN FACTORS INVOLVEMENT

A human factors expert, Dr. K. Fernandes, periodically evaluated the ETI.
She provided invaluable comments about simplifying the user interface. Her user interface
standard was followed (reference 1). Her comments related to consistency, readability, and other
aspects covered in the interface standard.

9

5.0 RECOMMENDATIONS

5.1 RECOMMENDATIONS FOR FUTURE WORK

The following list gives our recommendations for future ETI research and development.

1. Make the following improvements to the ETI—by adding:

� A tool-search capability to find the category in which the tool is located.

� Comprehensive error messages for the setup table.

� A context-sensitive help capability.

2. Include additional Ada tools. Those being considered for inclusion are Halstead metrics,
McCabe metrics, a path analyzer, performance analyzer, and a statement profiler from
AdaNet. Others that have wide application are also candidates.

3. Include C++ tools and write Motif front-ends for these tools. They include a pretty
printer, line counter, and others that are in the public domain and have wide application.

4. Include additional C tools and write Motif front-ends for them. These tools include a
cross referencer—and others.

5. Write Motif front-ends for commercial CASE tools to facilitate their use. These front-
ends facilitate using startup scripts to define tool parameters. Tools may include CADRE
Teamwork and Interactive Development Environments’ (IDE) Software Thru Pictures.

6. Upgrade the ETI to conform to revised standards.

5.2 GENERAL RECOMMENDATIONS

These general recommendations resulted from our observations while developing the ETI:

� Developers of DoD software and CASE tool developers should have human
factors specialists evaluate early prototypes of their user interfaces; such an
evaluation can help to eliminate awkwardness and inconsistencies, and
simplify interfacial use.

� Software developers must use standards to help them produce user interfaces
consistent in appearance and operation. We suggest using the NRaD user in-
terface specifications (reference 1) that we used.

11

6.0 REFERENCES

1. Fernandes, K. 1992. “User Interface Specifications for Command and Control Systems,”
ver. 1.2. Naval Command, Control and Ocean Surveillance Center, RDT&E Division, San
Diego, CA.

2. Deutsch, P., A. Emtage, B. Heelen, M. Parker. 1992. “Archie Database,” Archie Group,
McGill University, Montreal, Canada.

13

7.0 ANNOTATED BIBLIOGRAPHY

MountainNet 1992. “AdaNET Service, ver. 3.0, ASV3, User’s Guide for ASCII Terminals,”
Morgantown, WV.

The report contains instructions for accessing and extracting components from the AdaNET
repository. The AdaNET repository is sponsored by the National Aeronautics and Space
Administration Technology Utilization Division through the Johnson Space Center. It is
maintained by the AdaNET staff at MountainNET.

MountainNet. 1993. “ASV3 Catalog of Holdings—Software Components,” Morgantown, WV.

This report is a list of the components contained in the AdaNET repository. An abstract is
included for each component.

Open Software Foundation. 1993. “OSF/Motif Style Guide,” rev. 1.2 (for OSF/Motif rel. 1.2).
Prentice Hall, Englewood Cliffs, NJ.

The style guide contains a framework of behavior specifications to help developers build
products conforming to the OSF/Motif user interface.

Quercia V., and T. O’Reilly. 1993. “X Window System User’s Guide,” vol. 3, O’Reilly and
Associates, Inc., Sebastapol, CA.

This guide describes the X window system concepts, use of various client applications, and
customization of the X environment.

STARS. 1993. “ASSET Users Guide,” Morgantown, WV.

This users guide, available from within the ASSET library access software, contains instruc-
tions for accessing the library. The ASSET library is maintained by IBM and SAIC under the
STARS program.

Tran, N., and H. Mumm. 1992. “Environment/Tool Integrator for Software Development,” ver.
1.1. NRaD TR 1548 (Aug). Naval Command, Control and Ocean Surveillance Center
RDT&E Division, San Diego, CA.

This report describes the ETI, ver. 1.1, provides user instructions, and discusses lessons
learned during the ETI development.

15

8.0 ACRONYMS AND ABBREVIATIONS

ABOM — Ada Bit-Oriented Message Handler Project

ALS/N — Ada Language System/Navy
AFCEA — Armed Forces Communications and Electronics Association
APRICOT — Ada Primitive Compilation Order Tool

ARG — APRICOT Report Generator
ASG — APRICOT Script Generator

ASSET — Asset Source for Software Engineering Technology
CARDS — Central Archive for Reusable Defense Software
CASE — Computer-Aided Software Engineering

CIM — Corporate Information Management
CRSS — C3I Reusable Software System

C3 — Command, Control and Communications
DoD — Department of Defense
DTC-2 — Desk Top Computer-2

ETI — Environment/Tool Integrator
GUI — Graphics User Interface

IDE — Interactive Development Environments
LAN — Local area network
MACA — Management Assistant Corporation of America

MIT — Massachusetts Institute of Technology
NASA — National Aeronautics and Space Administration

NED — Navy Command and Control System Ashore Editor
NRaD — Naval Command, Control and Ocean Surveillance Center

Research, Development, Test and Evaluation Division

OSS — Operations Support System
QIC — Quarter-Inch Cartridge

SAIC — Science Applications International Corporation
SAINT — Shared Adaptive Internetworking project
STARS — Software Technology for Adaptable Reliable Systems

SWEEP — Software Engineering Environment Prototypes
TAC-3 — Tactical Advanced Computer 3

TI — Texas Instruments
X — The X Window System

A-1

APPENDIX A
USING THE ENVIRONMENT/TOOL INTEGRATOR (ETI)

A.1 INSTALLATION

This appendix gives instructions for installing the ETI either from a quarter-inch cartridge
(QIC) tape provided by NRaD or when extracting files from the STARS ASSET library, which is
funded by the STARS program. Products in the library are available to software practitioners in
industry, government, and academia.

These instructions assume the user has a basic understanding of the Unix operating system
commands and is running the Unix C-shell or Bourne shell for the SPARCstation 1, using
SunOS 4.1.3. To run on other platforms, the ETI must be recompiled before applying the follow-
ing installation instructions. The recompilation step also applies to the C and Ada tools that come
with the ETI. The Ada Compilation Order Maker will only compile with a Verdix compiler.

Before following the steps below, choose the directory in which the ETI is to be installed by
using the Unix command, cd . Then follow the appropriate set of instructions.

A.1.1 Installation from a QIC Tape Provided by NRaD

1. Unload Files from Tape

Insert the ETI tape into the tape drive. Unload the files on the tape using the command
below. This will automatically create the directory, sweep1 .2.

tar xvf /dev/rst0 ./sweep1.2.tar

2. Set Up the Environment Variables

The environment variables are set up in the file, .cshrc , for C-shell; or, .profile , for
Bourne shell. This file must be in the user’s home directory. Note in the instructions below,
the notation <path > indicates that the installer must specify the appropriate complete path
name. Place the following commands at the bottom of this file, using an editor:

For C-shell:

setenv SWEEP_HOME <path >/sweep1 .2

set path=($SWEEP_HOME/bin $path)

setenv XAPPLRESDIR $SWEEP_HOME/app-defaults/

For Bourne shell:

SWEEP_HOME=<path >/sweep1 .2

PATH=$SWEEP_HOME/bin:$PATH

XAPPLRESDIR=$SWEEP_HOME/app-defaults

export SWEEP_HOME XAPPLRESDIR PATH

Next, type the following to set the environment variables:

For C-shell:

source ~/ .cshrc

A-2

For Bourne shell:

sh ~/.profile

Confirm proper installation by invoking the ETI and noting that the top-level window is dis-
played on the user’s screen. The invocation step and a picture of the top-level window are given
in paragraph A.2.1.

A.1.2 Installation from the STARS ASSET Library

1. Extract and Transfer Files to the Host Computer.

a. Get an Account on the STARS ASSET Computer.

Before installing the ETI from the STARS ASSET library, obtain an account on the
ASSET computer. To do this, call (304) 594–1762 for a user form. Fill it out and
return it to the ASSET library system administrator. The ASSET library mail address
is provided in Appendix D.

b. Retrieve the Environment/Tool Integrator.

First, connect your host computer to the ASSET computer with the command

telnet source.asset.com (192.131.125.10)

and log on using your userid and password.

The ASSET main menu will be displayed automatically on the screen, once you log
on the system. Select the ASSET Reuse Library option from the main menu to
access the library. To search for the ETI, select ASSET search, ASSET
specific data , and Name options from menus on the screen; then enter
Environment/Tool Integrator . Press the “S” key to activate the search.
Finally, press the “E” key to extract the ETI files from the library and copy them to
your current directory on the ASSET computer.

If you need detailed instructions for using the ASSET library, go back to the main
menu, select “User’s Guide,” and browse to the appropriate instructions.

c. Transfer the Environment/Tool Integrator Files.

Transfer the files to your host computer, using ftp, Kermit, or other file transfer soft-
ware from the ASSET computer. Documentation containing detailed information for
performing file transfers is widely available.

2. Uncompress and Restore File.

Enter the following commands:

uncompress sweep1.2.tar.Z
tar xvf sweep1.2.tar

The first command uncompresses the single ETI file, sweep1.2.tar.Z , and
replaces it with the file, sweep1.2.tar . The second creates the individual files
and automatically creates the directory, sweep1.2.

A-3

3. Set Up the Environment Variables.

Use the same steps given in paragraph A.1.1., subparagraph 2.

A.2 EXECUTION

A.2.1 Invoking the SWEEP Environment/Tool Integrator

Start the ETI (in any directory) by typing

sweep

(The ETI was developed under the Software Engineering Environment Prototypes [SWEEP]
task of the Software Engineering for Command, Control, and Communications Systems project.)

The initial top-level window, shown in figure A-1, will appear on your monitor. This window
may be tailored to suit the specific needs of individual projects. Tailoring, discussed in section
A.3, may change details of the window’s appearance.

Figure A-1. Top-level window.

A.2.2 Top-Level Window Description

At the top of figure A-1, the line below the title line, SWEEP ENVIRONMENT/TOOL
INTEGRATOR, contains the security classification position, which, in this example, is
UNCLASSIFIED. This position represents the highest level of classification for any project
data. The position to its right shows the current system date and time.

The next line shows the seven tool categories, as well as the Exit and Help capabilities.

Figure A-2 shows the individual tools within each tool category and the options available
under Exit and Help . In this figure, all options are displayed. (This is done for explanatory
purposes only. In actual use, tools are displayed for only one category at a time.)

In figure A-2, the tools displayed in bold print (black on the monitor) are included with ver-
sion 1.2 of the ETI. Those not included appear in italic print in the figure (gray on the monitor).
Tools displayed in gray have not been installed. Most tools displayed in gray are commercially
available and, if needed by the project, must be purchased. Note that figure A-2 shows that the
current (ETI, version 1.2) C Toolset contains a function prototype generator, line counter, and
pretty printer; the Ada Toolset contains a body stubber, compilation order maker, line counter,
pager, and pretty printer; and the utility tools comprise a calculator, clipboard, command shell,
editors, E-mailer, and file manager. The right arrow next to Editor indicates that multiple
editors are provided. The underline characters in the tool and tool category names indicate that
the user can use the keyboard to invoke the tools. Keyboard invocation is discussed in paragraph
A.2.3.

A-4

Figure A-2. Top-level window with all tools and options displayed.

Next, note the options that are provided under Help , on the right-hand side of the window.
The Help capability provides the user with (1) help instructions for the top-level window, (2)
help instructions for using mnemonics, and (3) ETI version information.

The ETI is initially configured to include the seven tool categories and the tools indicated in
figure A-2. This configuration may be changed by following the tailoring instructions given in
section A.3. The number of tool categories, names of the tool categories, and tools within each
may be changed. All projects probably will want to keep the Utility and Help category.
Exit is the only category the user cannot customize.

Figure A-3 shows the subcategory capability. The right arrow pointing from Editor
indicates that multiple editors may be selected. The editors within this subcategory are the NED,
Emacs, and Xedit editors. A brief description of the NED is contained in Appendix B. A more
complete description is contained in reference 1, Appendix A. NED complies to the Navy
Command and Control user interface specifications (reference 2, Appendix A). Emacs is the
GNU Emacs editor that is in the public domain. Xedit is an X editor also in the public domain.

Figure A-3. Top-level window with subcategory of editors displayed.

A.2.3 Tool Invocation

To invoke an individual tool, click the left mouse button on the tool category and then click
the left mouse button on the appropriate tool. Tools can also be invoked with the keyboard by

A-5

holding down the Meta key (usually located next to the space bar) and pressing the key whose
letter is underlined in a tool category. The tool menu under the tool category displays on the
screen. Invoke a tool from the menu by using the underlined character in the tool name. For
example, to invoke the Line Counter under the C toolset category, hold down the Meta
key and press “C” to display the tool menu. Then press “L” to invoke the Line Counter.
(Appendix B contains a description of ETI tools.)

A.3 TAILORING

Users are allowed to define the name of the top-level window, the classification of project
data, the number and names of tool categories, and the tools within each. However, to comply
with the Navy Command and Control user interface specifications (reference 1), the ETI should
not have more than 10 categories, plus Help , and should not have more than 10 tools within
each category.

A.3.1 Version 1.2 as Delivered

The window and tool categories shown in figure A-2 are automatically produced from the
setup table shown in figure A-4. The setup table, contained in the file, sweep_config , was
automatically loaded during installation. This table is free format (i.e., at least one blank space
separates each field).

A.3.1.1 Setup Table. At the top of the setup table (figure A-4), the field, SWEEP ENVI-
RONMENT/TOOL INTEGRATOR, provides the name of the top-level window, which is
displayed at the top of figure A-2. The next field in figure A-4, UNCLASSIFIED, gives the
highest level of classification of the project data.

Next, note the tool category names and the tool names on the left side of the table. Both must
be enclosed in quotes. Next to them are the mnemonics that provide a shortcut to invoke tools
using the keyboard. A mnemonic of a tool or a tool category can be any single character, usually
the first character, of a tool or a tool category name. The mnemonic must be enclosed in quotes.
No tool categories can use the same mnemonic. Each tool in a tool category must use a mnemon-
ic that is unique within the tool category, and each tool in a subcategory must use a mnemonic
that is unique within the subcategory. If the user chooses not to have a mnemonic, a pair of con-
tiguous quotes must be present. The mnemonics are underlined when displayed on the screen.

To the right of each tool’s mnemonic is the executable field, which can be represented in
three different ways.

1. It can be the path name with the executable file name. Enclose such a string in quotes.

For example, look about two thirds of the way down figure A-4. In the Utility
category, for the Editor subcategory, for Ned, the path name to the NED executable is
the path name including the executable file, $SWEEP_HOME/bin/ned.

2. It can be the executable file name enclosed in quotes (without the path name). In this
case, the path name must be set in the .cshrc file.

A-6

Figure A-4. Example of setup table.

For example, in the C Toolset category (toward the top of figure A-4), for Line
Counter , the executable field is c_line_counter , which indicates that the path
name is in .cshrc.

3. It can be a pair of contiguous quotes representing a null field, which indicates the
executable file name has not been specified. This may be used, for example, to represent
a place holder for the tool, indicating it has not been purchased or it is not presently
available. The CARDS and CRSS library executable fields show null fields.

Subcategories of tools can be defined. For example, the Utility category has the Editor
subcategory that consists of the three editors: Ned, Emacs, and Xedit.

A-7

Also note that Exit category—the only noncustomizable category—does not appear in the
setup table.

Finally, note the file names, help.window, help.keys and help.version , on the
bottom right of the table under the Help category. These files contain text for the on-line help
and are automatically put in the directory $SWEEP_HOME/help during installation. If you
want to add more help options, place all their text files in the directory $SWEEP_HOME/
help.

When creating a setup table:

� Enclose each tool category name in quotes, followed by a colon (except for
the help category).

� Enclose each tool name and mnemonic in quotes.

� Separate tool information with the delimiter comma.

� End category information with a semicolon.

� When the name of the executable file is not given within quotes, note that the
tool will appear in gray on the monitor.

� When there is a subcategory of tools, the rules are analogous to those for a
category of tools.

� Enclose the subcategory name in quotes, followed by a mnemonic and a colon.

� Enclose each tool name in quotes.

� Separate tool information with the delimiter comma, and include the end of the
subcategory with a semicolon.

A.3.1.2 X Instructions. In figure A-4, some executable file names are followed by
additional instructions. These are command-line X instructions the user may or may not need.

A short explanation of these instructions is provided here. For a detailed explanation, refer to
the on-line users manual, man pages (reference 3, Appendix A), which is included with the
X Window System from the Massachusetts Institute of Technology (MIT).

Find the executable file xcal about two thirds of the way down figure A-4, on the right.
The expression –geometry +10+120 is an X instruction that tells xcal that the starting x,y
pixel position for xcal is 10,120. This is needed to ensure that the xcal windows do not
overlay the ETI top-level window (figure A-1). You may arbitrarily select any x pixel position
that lies on the screen. The y pixel position is critical for positioning the tool’s windows below
the ETI top-level window.

Now, further down in figure A-4, find the Emacs editor. The expression xterm –fn
10x20 -e emacs indicates (1) the font size for the emacs editor is a 10-by-20 pixel fixed-
width font (the emacs font size was increased from the default size to increase readability) and
(2) emacs is executed inside the xterm window.

A.3.2 An Example of Tailoring to a Specific Project

Figure A-5 shows the top-level window for a hypothetical project (when all tools and options
are displayed). This project does not use Ada, but uses C and FORTRAN. Note how this

A-8

top-level window differs from the one given in figure A-2. The label at the top of the screen is
now PROJECT X. The category, FORTRAN Toolset, was created (the fourth category).
For Project X, a number of project-specific tools are used, so the next tool category, Project
X Tools, was created. Finally, two different CASE tools are used, Code Center and Cadre
Teamwork. Figure A-6 shows the changes that were made to the setup table to tailor the ETI to a
specific project. The changes were made to the file, sweep_config . After making the
appropriate changes, type:

sweep

to bring up the ETI, as shown in figure A-5.

Figure A-5. Top-level window with tools and options displayed tailored to a specific project.

A-9

Figure A-6. Example of setup table tailored to a specific project.

A.4 REFERENCES

1. Naval Command, Control and Ocean Surveillance Center, RDT&E Division. 1992.
“CRSS Replicated Site Procedures Manual, Alpha rel. 1.0,” San Diego, CA.

2. Fernandes, K. 1992. “User Interface Specifications for Command and Control Systems,”
ver. 1.0, Naval Command, Control and Ocean Surveillance Center, RDT&E Division,
San Diego, CA.

3. Converse, D. S., S. Gildea, S. Hardy, J. Hersh, K. Packard, R. Scheifler, and R. Swick.
1991. “User Commands for X Window System,” on-line instructions, Massachusetts
Institute of Technology Consortium, X ver. 11, rel. 5, Boston, MA.

B-1

APPENDIX B
USING THE TOOLS

Appendix B briefly describes the tools included with the ETI and shows how to use them.
Specific examples are provided. The test files described in the examples are included with
version 1.2 of the ETI. You may run the examples exactly as presented here.

B.1 C TOOLSET

B.1.1 Line Counter

Function: The line counter is the kdsi program written by B. Renaud in July 1988. It was
obtained from Ohio State University. A Motif front-end was added by the ETI project. The line
counter reads in text files; and then, on your monitor, displays the number of lines of code, blank
lines, comment lines, and number of comments.

Example: The user provides input through the menu given in figure B-1. In this example,
the user wanted the counts for all C files in the directory, $SWEEP_HOME/testfiles. This
was indicated in the Input box. The user executed the tool by clicking on the Execute box. The
center panel displays the lines of code, blank lines, comment lines, and number of comments for
all C files in the designated directory.

To output counts to both your monitor and a file, you must enter a file name in the Output
box.

The Display available files box allows you to list files.

You can find additional information on the line counter by examining the source code and
readme files in the directory, $SWEEP_HOME/tools/kdsi, on your computer.

B.1.2 Pretty Printer

Function: This pretty printer is the C beautifier (cb) program dated September 1987 in the
“SunOS Reference Manual” (in reference 1). A Motif front-end was added by the ETI project.
The pretty printer reads in a C source code file and produces a source file with indentation. You
can join split lines and can also split lines that are longer than a user-specified length.

Example: Name the input through the menu given in figure B-2. As shown, the user wants
the file, $SWEEP_HOME/testfiles/main.c to be reformatted into standard C style and
to be output to the file, /mnt/sweep1.2/testfiles/reformatted_main.c. To run
the pretty printer, the user enters these file names in the appropriate boxes and clicks the option
for standard C style. The output is displayed in the bottom panel of figure B-2 and is written to
the designated file.

To direct the output to the screen only, omit an output file name. Options are also available to
join split lines and to split lines. These options may be invoked simultaneously.

Within the ETI, you may examine the contents of the output file by going to UTILITY and
Command Shell, and then typing

more /mnt/sweep1.2/testfiles/reformatted_main.c

B-2

Figure B-1. Menu for the C line counter.

Additional information on the pretty printer is found in the “SunOS Reference Manual”
(reference 1, Appendix B).

B.1.3 Function Prototypes Generator

Function: The function prototypes generator is the mkproto written by E. Smith in
September 1989. It was obtained from Ohio State University. A Motif front-end was added by
the ETI project. The function prototypes generator reads in one or more C source code files and
produces a list of function prototypes for the functions defined in the input files.

B-3

Figure B-2. Menu for C pretty printer.

Example: Figure B-3 shows how to use the function prototypes generator. Specify input
files by entering the file name or names in the Input box or by clicking on the Display available
files to select the files. This example generates prototypes for functions defined in the file
$SWEEP_HOME/testfiles/mkproto.c. The Include line number option causes the line
number (where each function was defined) to be inserted as a comment in front of the corre-
sponding function protoype declaration. The Execute box was clicked on to execute the tool. The
output of the function prototype declarations, with the line number inserted in front of each
declaration, appears in the lower panel.

To redirect the output to a file, enter a file name in the Output box. Options are also available
for generating prototypes for static functions and for generating code compilable by ANSI
compilers only.

B-4

Figure B-3. Menu for the function prototypes generator.

B.2 ADA TOOLSET

B.2.1 Body Stubber

Function: The body stubber creates an Ada package body, with stubs for subprograms and
tasks, from an Ada package specification containing the specifications for subprograms and
tasks. The stubber reads in an Ada package specification with subprogram and task specifica-
tions and generates a file containing an Ada package body with stubs for subprograms and tasks.

Example: The following is what a typical session looks like immediately after invoking the
body stubber.

Enter name of file: $SWEEP_HOME/testfiles/stubber_input
Enter output file
name(Default:$SWEEP_HOME/testfiles/stubber_input_body):

RETURN — When user presses Return, the default file is created.

B.2.2 Compilation Order Maker

The Ada compilation order maker is a Motif front-end for invoking the Ada primitive com-
pilation order tool (APRICOT), APRICOT report generator (ARG), and APRICOT script
generator (ASG) programs. These programs are invoked from the menu shown in figure B-4.

B-5

Figure B-4. Menu for the compilation order maker.

APRICOT

Function: APRICOT reads in compilable Ada source code and produces a database con-
taining an analysis of the compilation order dependencies. The database can be used by the
APRICOT report generator to generate reports based on the analysis.

Example: Figure B-5 displays the Motif front-end to APRICOT. This example splits the
paged file $SWEEP_HOME/testifies/apricot_input into individual files and saves
the analysis of the compilation order dependencies in a file for future use. To accomplish this,
click on the Select Input Files box to select the input file; then enter the output file name,
database; click on the Split files option; and then click on Execute.

APRICOT Report Generator (ARG)

Function: The APRICOT report generator uses a database generated by APRICOT as input
and produces compilation order dependency reports.

Example: This example shows how to generate a list of file names in compilation order
from the database generated by the APRICOT. Select the file, database, as input to ARG
by clicking on the Select Input Files box in the menu shown in figure B-6. Then enter
include as the output file name and select the options for generating a report containing the
split-file names of all compilation program units. To execute the program, click on the Execute
button.

B-6

Figure B-5. Menu for APRICOT.

APRICOT Script Generator (ASG)

Function: The APRICOT script generator reads in a file containing a list of Ada file names
and generates a file with a user-defined command for each file name. The output file can be a
batch command file for compiling Ada source code. Compilation command files can be automat-
ically created in this manner for any Ada compiler.

B-7

Figure B-6. Menu for the APRICOT report generator.

Example: Figure B-7 displays the ASG menu to generate a command compilation file from
the include file produced by ARG. Click on the Select Input Files button to produce a file
selection box where you can select the include file as the program input. Enter the output
file, batch, and command, ada –v, in appropriate boxes. Finally, click on the Execute
box.

B.2.3 Line Counter

Function: This line counter is a Motif front-end to the FILE_CHECKER, version 1.4. The
line counter counts Ada source code statements, comments, and lines (card-image statements).
Refer to Appendix C for more information on the FILE_CHECKER.

B-8

Figure B-7. Menu for the APRICOT script generator.

Example: Figure B-8 illustrates the use of the line counter. This example counts the number
of lines in the Ada files in the $SWEEP_HOME/testfiles directory. Click on the Select
Input Files button to select the files. The files selected are shown in the box below the button.
Click on the Execute button to execute the program. The bottom panel displays the line counts
for the selected files. Enter the file name in the Enter Output File Name box to save the line
counts to a file.

B-9

Figure B-8. Menu for the Ada line counter.

B.2.4 Pager

Function: The pager combines many files into a concatenated file and breaks a concate-
nated file into multiple files. It also lists all the files and their line counts from a concatenated
file that contains multiple files.

Example: The example given in figure B-9 breaks a concatenated file into individual files.
Select the Unpage option. Then click on the Select Input Files button to select the input file,
$SWEEP_HOME/testfiles/pager_input, and then click on the Execute box. The files
extracted and their line counts are displayed in the bottom panel. To redirect the output displayed
on the panel to a file, enter a file in the Enter Output File Name box.

B.2.5 Pretty Printer

Function: The pretty printer reads in Ada source code file(s) or a file containing Ada
source code file names and creates an output file with spacing, indentation, and capitalization
that conforms to the proposed Ada Style Guide Handbook (reference 2, Appendix B).

Example:

The following is an example of a session after invoking the line counter.

Ada File? > $SWEEP_HOME/testfiles/pretty_print_input
$SWEEP_HOME/testfiles/pretty_print_inppp created

— File of reformatted Ada source code.

B-10

$SWEEP_HOME/testfiles/pretty_print_inpsr created
— File containing statistical information on source code.

Figure B-9. Menu for pager.

B.3 UTILITY

B.3.1 Calculator, Clipboard, Command Shell, E-Mail

The calculator, clipboard, command shell, and E-mail tools are provided by the X Window
System. You can find user information about these tools on line, by using man pages . For
example, type man xcalc, man xclipboard, man xterm, man xmh at the Unix
prompt to display manual pages for the calculator, clipboard, command shell, and e-mail,
respectively.

B.3.2 Editors

B.3.2.1 NED. The Navy Command and Control System Ashore Editor (NED) is a text
display and editing system that was designed for viewing portions of source code and
documentation stored in the CRSS library. NED may also run as a stand-alone application for
editing text files. NED was developed by K. Allen, Intermetrics, for the OSS project. NED user
instructions are contained in the “CRSS Replicated Site Procedures Manual” (reference 3).

B.3.2.2 Emacs. This tool is the GNU Emacs editor from the Free Software Foundation. The
editor includes facilities to send and receive mail, run subprocesses, and do compilations. It was
written by R. Stallman.

B-11

B.3.2.3. Xedit. Xedit is a customizable text editor for the X Window System developed by
MIT. It was written by C. Peterson, MIT X Consortium.

B.3.3 File Manager. File Manager is a Motif application used to navigate through file hierar-
chies. This tool provides facilities to search, move, copy, compress, and view files, and to obtain
file information. It was developed by K. Allen, Intermetrics, for the OSS project.

B.4 REFERENCES

1. Sun Microsystems, Inc. 1990. “SunOS Reference Manual, rev. A.”

2. “Ada Style Guide Handbook.” 1988. MIL-HDBK-1804, Draft, National Aeronautics and
Space Administration/Goddard Space Flight Center.

3. Naval Command, Control and Ocean Surveillance Center, RDT&E Division. 1992.
“CRSS Replicated Site Procedures Manual, Alpha rel. 1.0,” San Diego, CA.

C-1

APPENDIX C
BACKGROUN D INFORM ATION ON THE ADA TOOLS

APRICOT, APRICOT Report Generator (ARG), and APRICOT Script Generator (ASG)

APRICOT and ARG are tools for determining the compilation order for a collection of Ada
files. They also perform pager functions. ASG creates command compilation files from concate-
nated pager files. These tools were developed by R. Ollerton in 1992, and
updated by him in 1993. They currently run on Vax/VMS and SPARCstations.

Body Stubber

The body stubber is Body Stubber 2 from the AdaNet repository, Morgan town, WV. It was
written by J. Orost, Concurrent Computer Corporation in 1983, and updated by him in 1987.
N. Tran, NRaD, upgraded it to run on VAX/VMS (DEC Ada), Sun (Verdix), and other validated
Ada compilers. This tool is especially useful for large projects, where interfaces must be defined
very early. The body stubber reads in an Ada package specification containing the specification
for subprograms and tasks. It automatically creates a compilable package body containing stubs
for the subprograms and tasks. NRaD resubmitted it to the AdaNet Repository in December
1991. It was submitted again to AdaNet in December 1993, because it was misplaced at AdaNet
during a move.

Line Counter

The Ada line counter is FILE_CHECKER, version 1.4, from the AdaNet repository. It was
written by R. Conn, Texas Instruments (TI) and Management Assistance Corporation of America
(MACA) in 1985 and updated in 1989. Fixes have been made by H. Mumm, NRaD, and
P. Babick, Science Applications International Corporation (SAIC). The line counter is written in
Ada and runs on VAX/VMS (DEC Ada), Sun (Verdix), and other validated Ada compilers. The
tool counts Ada source lines of code several ways. This tool was used on the Ada Bit-Oriented
Message Handler (ABOM) project by NRaD and SAIC to report programmer productivity statis-
tics. It was submitted to the AdaNet in December 1991 and was also again submitted to AdaNet
in December 1993, because it was misplaced.

Pager

The pager includes the Pager2 program, which was developed in 1989 by R. Conn, of TI and
MACA, and a Motif front-end written by N. Tran, NRaD. Pager2 was written in Ada and runs on
VAX/VMS (DEC Ada), Verdix (Sun), IntegrAda, and other validated Ada compilers. The tool
concatenates Ada source files, breaks concatenated files into individual files, and makes listings.
Pager requires that source files be in the pager format, a prefixed banner of comment statements.
Pager is a tool used for storing and transporting related files. It is used by AdaNet users to break
apart concatenated files.

Pretty Printer

This pretty printer is pretty printer 6 from the AdaNet repository. It was written in 1987 and
updated in 1988 by A. Shell, AdaCraft, Incorporated, for the NASA/Goddard Space Flight

C-2

Center. It was written in Ada and runs on VAX/VMS (DEC Ada), SUN (Verdix), PC (Alsys),
and on other compilers/computers. Pretty printer 6 implements many of the directives in the pro-
posed MIL-HDBK-1804, “Ada Style Guide.” The modifications required to change the number
of columns of indentation, the case of variable names, and other pretty printer parameters are
isolated in one Ada package specification. This pretty printer was used by NRaD for
the Ada discrete-event simulation research conducted by the Shared Adaptive Internetworking
(SAINT) project.

D-1

APPENDIX D

SOURCES FOR PUBLIC DOMAIN TOOLS—PHONE NUMBERS AND
ADDRESSES

Repository Telephone Number to Address
Request an Account

STARS ASSET Library (304) 594–1762 STARS ASSET Library
2611 Cranberry Square
Morgantown, WV 26505

AdaNET (800) 444–1458 MountainNet, Inc
2705 Cranberry Square
Morgantown, WV 26505

Archie None required archie.ans.net
(147.225.1.10)

!�� '�� '=,9� ,9/� %�� ��� @88

!,A,7� �:88,9/�� �:9?=:7� ,9/� ".0,9� &@=A0477,9.0� �09?0=� �!��"&��
%�'��� �4A4>4:9� �!%,��
&,9� �402:�� ��� � ��
����		

�<)30*� 9,769;05.�)<9+,5� -69� ;/0:� *633,*;065� 6-� 05-694(;065� 0:� ,:;04(;,+� ;6� (=,9(.,� �� /6<9� 7,9� 9,:765:,�� 05*3<+05.� ;/,� ;04,� -69� 9,=0,>05.� 05:;9<*;065:�� :,(9*/05.� ,?0:;05.� +(;(� :6<9*,:�� .(;/,905.� (5+
4(05;(0505.� ;/,� +(;(� 5,,+,+�� (5+� *6473,;05.� (5+� 9,=0,>05.� ;/,� *633,*;065� 6-� 05-694(;065�� !,5+� *644,5;:� 9,.(9+05.� ;/0:�)<9+,5� ,:;04(;,� 69� (5@� 6;/,9� (:7,*;� 6-� ;/0:� *633,*;065� 6-� 05-694(;065�� 05*3<+05.
:<..,:;065:� -69� 9,+<*05.� ;/0:�)<9+,5�� ;6� %(:/05.;65� �,(+8<(9;,9:� !,9=0*,:�� �09,*;69(;,� -69� �5-694(;065� �7,9(;065:� (5+� ,769;:�� �	��� �,--,9:65� �(=0:� �0./>(@�� !<0;,� �	���� �9305.;65�� $�
			�	A�
�	�� (5+� ;6� ;/,� �--0*,� 6-� �(5(.,4,5;� (5+� �<+.,;�� �(7,9>692� ,+<*;065� �961,*;� �����A������� %(:/05.;65�� ��� � 	���
�

���
�� �
����	��
	� ����

	�� ��� "���"���������&�#!�����&

���"�"�������!#�"�"��

���#"�� �!�

�� ��� "�"&���������"�!���$� ��

����#�������#��� !

���!���!� ��������"� ���������&������!��������� �!!��!�

����� �� ������ ����'�"���

����!���!� ��������"� ���

����� �� ������ ����'�"���������!��������� �!!��!�

����!#�������"� &���"�!

����!��# �"&����!!�����"���

����!#����"�"� �! �����#��� ��������!

	�������"�"���������!" ��"

�!������A��A	��A����

���� ����� ��
���� ���� �	��#��

���� �� ������

 ��� "��#���

�����&� ��� "��#���

�	(����!" ��#"�����$��������"&�!"�"����" �)����!" ��#"��������

�
����!" ��" ���"����� ���� !�����

��� ��� "
����!��# �"&����!!�����"���

���"��!�����
����!��# �"&����!!�����"���

�����!" ��"

���� ��������

!;(5+(9+�-694�	������ ��"�

(!���&&����� (!���&&����� (!���&&����� &� �� �&� %�#"%'

'34>� =0;:=?� /0>.=4-0>� ?30� 09A4=:9809?�?::7� 49?02=,?:=� ��'���� A0=>4:9�
���� ?3,?� B,>� /0A07:;0/� @9/0=� ?30� &:1?B,=0� �924900=492

�9A4=:9809?� #=:?:?D;0>� �&*��#�� ?,>6� :1� ?30� &:1?B,=0� �924900=492� 1:=� �:88,9/� �:9?=:7� ,9/� �:88@94.,?4:9>� ����� &D>?08>

;=:50.?�� '30� �'�� 4>� ,� B49/:B492� 1=,80B:=6� 1:=� ,..0>>492� ?30� /4A0=>0� .:770.?4:9>� :1� >:1?B,=0� ?::7>� @>0/� -D� >:1?B,=0� /0A07:;809?

;=:50.?>�� �?� .,9� 0,>47D� -0� .@>?:84E0/� ?:� >,?4>1D� ?30� @94<@0� 900/>� :1� >;0.414.� ;=:50.?>�� '30� �'��� A0=>4:9�
���� 0C0.@?0>� :9� ?30� 1:77:B492

(94CG-,>0/� .:8;@?0=>�� &#�%��
� �"&�� &@9"&�
����� &474.:9� �=,;34.>� �"&�� �%�+� �	����� ���� �7;3,� �"&�� "&��
����� �� � �			� �"&�

�
+������ ,9/� &#�%��
	� �"&�� &@9"&� ������ '::7>� ,..0>>0/� 8,D� =0>4/0� :9� A,=4:@>� B:=6>?,?4:9>� 49� ,� 7:.,7� ,=0,� 90?B:=6� ���!��

�,9@,=D�
�� �49,7�F�����
����

�!)�%"! �!'�'""�� �!'��%�'"%� �"%� &"�'*�%�� ��)��"# �!'
)0=>4:9�
��

#%"��� 	�	���!
#%"��� ����
���� �!	����	

'%�
���� %0A4>4:9�

�;;=:A0/� 1:=� ;@-74.� =070,>0�� /4>?=4-@?4:9� 4>� @97484?0/�

��� �/, 09A4=:9809?�?::7� 49?02=,?:=� ��'��
 :?41�� + 2=,;34.,7� @>0=� 49?0=1,.0� -@47/0=

"114.0� :1� !,A,7� %0>0,=.3
�,77>?:9� ':B0=
�		� !:=?3� $@49.D� &?=00?
�=7492?:9��)�� ���
���			

